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Abstract. If calculated in the standard way, the cross section for the collision of two unstable particles
turns out to diverge. This is because part of such a cross section is proportional to the size of the colliding
beams. This effect is called the “linear beam size effect”. We present a way of including this linear beam
size effect in the usual Monte Carlo integration procedure. Furthermore we discuss the gauge breaking
that this may cause.

1 Introduction

The cross section for the collision of two unstable parti-
cle generally diverges. This happens for instance in the
Feynman graph

(1)

The lower half of this graph looks like the decay of a muon.
Consequently the kinematics of the process allows the mo-
mentum k to be on its mass shell. After all that is what
one gets from the decay of a muon: a muon neutrino on its
mass shell. The factor 1/(k2 +iε) that occurs in the matrix
element causes a divergence of the total cross section.

In [1, 4] this problem has been studied in detail, and
it has been shown that this divergence is softened into a
finite peak if the incoming particles are described carefully
enough. In this paper we give a prescription for including
this peak in Monte Carlo simulations. Typically such mod-
ifications may result in a violation of gauge invariance in
the amplitude. We study this effect in detail.
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2 Asymptotic states

In the context of scalar particles,Veltman [2] has shown that
the S-matrix satisfies unitarity and causality only if one
restricts the in/out states to the stable particles. Because
of this, when considering collisions of unstable particles,
we should use Feynman graphs that take the production
process of the unstable particle into account. We are going
to show that we actually do not need to worry about this
as long as the wave packets of the unstable particles are
much smaller in size than the decay length of the unstable
particle. A complete amplitude for the production and
collision of two muons looks like

A = (2π)4i
∫
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where
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may be viewed as the wave function of the unstable particle.
Notations like φpa(p′

a) stand for the wave function of a
particle that is peaked in momentum space around the
value pa evaluated at p′

a The above expression for the
wave function of an unstable particles assumes that the
unstable particle is produced in a two-to-one process. We
make this assumption only for the sake of simplicity of
notation. If there are other outgoing or incoming particles
their wave functions can easily be added. Also note the
factors e−iτip

′
i·pi/mµ . These factors are translations of the
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wave function. The point of these translations is that they
make sure that the unstable particles are produced away
from the spot where they collide. The invariant distance
that the unstable particle travels before colliding is τi.

Now we are going to use the assumption that the wave
packets are much smaller than the decay length. This has
as a consequence that in momentum space the wave pack-
ets are much broader than the decay length. Because of
this we may assume that they are constant functions of
(p′

1)
2 respectively (p′

2)
2 over a range of several timesmµΓµ.

Therefore it is possible to integrate the expression for A
given above over the values of (p′

1)
2 and (p′

2)
2. We only

have to integrate the factors contained in the quantity F
that is defined to be given by

F = e−iτ1p′
1·p1/mµe−iτ2p′

2·p2/mµ (4)

× 1
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.

We integrate along a path parameterized as p′
1,2(t). This

parameterization is done according to

p′
1(t) = p′

1(0) + tc;

k′(t) = k′(0) + tc; (5)

p′
2(t) = p′

2(0) − tc.

If we want to integrate over the value of (p′
1)

2 we choose
c to be a four vector that is a linear combination of p1, p2
and k such that it is orthogonal to the latter two vectors
but not to p1. This parameterization is so chosen in order
to satisfy momentum conservation and furthermore to be
on a constant k2-plane in order not to get difficulties with
the singularity at k2 = 0. After doing this integral and an
analogous one over the value of (p′

2)
2, we find the result
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This is (except for the decay factors e−Γµτi/2) exactly the
same as our result if we had started with incoming muons
on their mass shell. The conclusion is that if we have wave
packets that are much smaller than the decay length of
the unstable particles we may treat them as if they were
asymptotic states.

This has no bearing on the question of gauge invariance.
Matrix elements depend on the masses of the particles. If
masses are chosen such that the muon is no longer unstable
(by assuming the electron to be heavier than the muon, so
that the decay is forbidden), the matrix element is gauge
invariant, so itmust also be so ifmasses are chosen according
to their measured values.

3 The linear beam size effect

We observed that the divergence in the cross section is
caused by a peak in the matrix element in momentum
space. A sharp peak in momentum space means a long
range effect in position space. Indeed, the decay product
of a decaying muon can travel over arbitrary distances. The
consequence is that the cross section becomes proportional
to the size of the beam. In colliders the longitudinal beam
size is much larger than the transverse one. Consequently,
the cross section is actually proportional to the transverse
beam size, to be denoted by a. The precise definition of
this quantity can be found in [1]. In the same paper a more
rigorous version of this qualitative argument was given.
In [4] it was shown that the quantities used in the rigorous
argument can replaced by covariant ones.

The part of the cross section proportional to the beam
size is given by

σsemi−sing = aπ
∫

dσred
1

|k⊥| δ(k
2 −m2), (7)

where σred is the cross section with the offending propaga-
tors (k2 −m2 ± iε)−1 removed. k⊥ is by definition given by
k+αp1 +βp2 with α and β chosen such that k⊥ · p1,2 = 0.

The above formula gives the part of the cross section
proportional to the beam size, but it would be more con-
venient if the linear beam size effect could be incorporated
in the usual Monte Carlo integration procedure. This can
indeed be done by doing the substitution

1
k2 −m2 ± iε

→ 1
k2 −m2 ± i|k⊥|/a . (8)

If we use the approximation

1
(k2 −m2)2 + |k⊥|2/a2 ∼ aπ

|k⊥| δ(k
2 −m2), (9)

these two expressions become equal. This approximation
is good in the sense of distributions on an interval [m2 −
L,m2 + L] around k2 = m2 where L statisfies m2 � L �
|k⊥|/a, provided that we have

σred � |k⊥|
a

L
d2σred

(dk2)2
, (10)

where σred, in this equation, stands for the contribution to
the reduced cross section from this interval. Outside the
interval, the left-hand side of (9) is a good approximation
of the squared propagator.

3.1 Gauge invariance

The above prescription breaks gauge invariance. We study
the process µ− +µ+ → e− + ν̄e +W+. To do this, six Feyn-
man graphs with γ, W± and Z0 as fundamental bosons
are needed. The propagators of the massive bosons must
be given a width. This does affect the gauge invariance
of the amplitude. In [3] it was shown that just using the
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iMΓ -prescription may lead to grossly inaccurate results.
However, in the present paper we want to focus on the effect
of the gauge breaking caused by our i|k⊥|/a-prescription.
For this reason we use the pole scheme for the massive
bosons, so that they do not break the gauge. What flavour
of this scheme we actually used can be found in Appendix A.
It turns out that in theRξ-gauge, no gauge dependence due
to the i|k⊥|/a-prescription is found, although we actually
broke gauge invariance. That is, the results do not depend
on the gauge parameter ξ. This can be understood from the
Feynman graph displayed in (1). The gauge dependence
comes in via a term proportional to (q1+q2)µ(q1+q2)ν that
occurs in the W−-propagator. However, this term disap-
pears because one of these factors q1+q2 is to be contracted
with the current containing the outgoing fermions. These
are to be taken massless, so consequently this does not con-
tribute, regardless of the gauge breaking that may occur
at the other side of the W−-propagator. To see that our
prescription actually breaks gauge invariance we used the
axial gauge. In this gauge the undressed propagator of the
W particle is given by

∆(k)νµ =
−i

(
gµν − nνkµ+nµkν

n·k + kνkµ
n2

(n·k)2

)
k2 −M2

W + iε
. (11)

The expression for the squared matrix element can be
rewritten in such a way that all gauge breaking terms
are proportional to |k⊥|/a or the square of this quantity.
The axial gauge is not very easy to work with in practice,
because one either has propagators that mix longitudinal
gauge bosons with would-be Goldstone bosons or, if prop-
agators are diagonalized, rather complicated expressions
for the vertices. Details are discussed in [7]. To find the
gauge breaking terms in the unitary gauge we calculate
the difference

|M|2gauge−break = |M|2unitary gauge − |M|2gauge invariant.(12)

The gauge invariant quantity is calculated by using the
axial gauge and the gauge invariant prescription

Mgauge invariant =
Res

k2=m2
M

k2 −m2 + i|k⊥|/a + Mregular (13)

that gives a gauge invariant quantity in the spirit of the
pole scheme. This calculation was done in the axial gauge
to check that we actually get a quantity that does not
depend on the gauge vector n. The algebra was done using
the C++ computer algebra library GiNaC [8]. We find
that the quantity |M|2gauge−break is, compared to the rest
of the cross section, a factor |k⊥|/(as) ∼ 1/(a

√
s) smaller.

Numerically that is a factor 7 · 10−14 for
√
s = 150 GeV

and a =
√

π · 10 µm (which is a reasonable value). In [3] it
was shown that gauge breaking effects can get enhanced
by a factor as large as s/m2

e, but even if this would happen,
the gauge breaking due to our handling of the linear beam
size effect remains negligible (note that in the context of
muon colliders one would actually expect a factor s/m2

µ

for the case discussed in [3]).

4 Conclusions

The linear beam size effect can be incorporated in the usual
Monte Carlo integration procedure by doing to substitution

1
k2 −m2 ± iε

→ 1
k2 −m2 ± i|k⊥|/a (14)

in the propagator that causes the divergence. This can be
done in a gauge invariant way, but in the unitary gauge
the gauge breaking effect is so small that it is safe not to
worry about the gauge dependence. The gauge breaking
effect of the iMΓ -prescription is much larger than that due
to i|k⊥|/a.

Acknowledgements. We would like to thank Prof. P. van Nieu-
wenhuizen for bringing the problem of gauge dependence to
our attention.

A The pole scheme

To describe resonances, as observed from theW and Z par-
ticles, one needs a resummed propagator that contains a
factor (p2 −M2 + iMΓ )−1. The problem with this propa-
gator is that it breaks gauge invariance, which means that
observable quantities depend on the gauge choice. The pole
scheme (cf. [5, 6]) is one of the ways to solve this. To use
it, we first observe that both the position of the pole and
its residue are gauge invariant quantities. They must be
because they can be determined by experiment. The con-
sequence is that every matrix element that involves such
a pole can be written as

M =
F (p2 = M2 − iMΓ )
p2 −M2 + iMΓ

−F (p2) − F (p2 = M2 − iMΓ )
p2 −M2 + iMΓ

+ Mrest, (15)

where the first term is gauge invariant, as are the second
and third together.

In practice things are a bit more involved than sketched
in the previous paragraph. A matrix element generally
depends on more that just p2 and thus a prescription is
needed to tell us what happens to all the other quantities
that occur in the matrix element if we put p2 equal toM2−
iMΓ . We follow the method outlined in [5]. Our matrix
element contains strings of gamma matrices with spinors at
the beginning and end. These are canonicalized to ensure
that all strings of gamma matrices are linearly independent.
This means that if we have, say, a /p and a /q in some string
of gamma matrices, we can also have this string of gamma
matrices with the /p and /q interchanged. We then have
to decide which of these two comes in front. The anti-
commutation relations that one has for gamma matrices
are then used to do this. Also the relations /pu(p) = mu(p)
and /pv(p) = −mv(p) are used whenever applicable.

After this has been done, the strings of gamma matri-
ces that remain are linearly independent. They are said
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to form a set of independent covariants. If the matrix el-
ement is going to be gauge invariant, each coefficient of
such a string of gamma matrices must separately be gauge
invariant. So (15) is not used for the full matrix element
but actually for the invariant coefficient that occur in front
of the different products of strings of gamma matrices. In
order to do this, it is also necessary to eliminate one of the
outgoing/incoming momenta by using momentum conser-
vation for the entire matrix element. All inner products
between in- or outgoing momenta in the matrix element
are expressed in a smallest complete set of Lorentz invari-
ant variables. In the case of the outgoing momenta shown
in the graph in (1) the set consisting of

s = (p1 + p2)2;

t = (p1 − q1 − q2)2;

x = (q1 + q2)2; (16)

y = (p1 + p2 − q2)2;

z = (p1 − q1)2,

can be chosen. If one uses that the squares of incoming and
outgoing momenta are given by the appropriate masses
squared, all inner products between momenta are deter-
mined by specifying the variables (s, t, x, y, z). Now setting
the square of some internal momentum in some Feynman
graph equal to some value is a well-defined operation, ex-
cept for some caveats that we discuss next.

The caveats are the following.
(1) If we have outgoing or incoming vector bosons, we
should also treat inner products of the form p · ε with ε the
polarization vector as linearly independent covariant quan-
tities. Some elements in the set of independent covariants
contain a factor p · ε. In the case of the axial gauge this set
furthermore includes factors that are inner products with
the gauge vector n.
(2) In the unitary gauge, the inner product of a polariza-
tion vector with the momentum of the particle to which the
polarization vector belongs is zero. For this reason, these
inner products should not appear in the set of independent
covariants, nor in the coefficients that multiply them. The
same applies to the inner product of polarization vectors
with the gauge vector n in the axial gauge.
(3) In the axial gauge the property holds that if we have
outgoing or incoming vector bosons the matrix element
becomes zero if the polarization vector of a vector boson is
replaced by its momentum. It is a feature of the axial gauge
that this not only happens for massless gauge bosons but
also for massive ones. This shows that the set of covariants
that we had is not really linearly independent. To see how
this can be solved consider a matrix element of the form

M = ε · p1F1 + ε · p2F2 + ε · p3F3. (17)

Here the inner products ε ·pi are the covariants and the Fi

are the invariant functions. If we know that the relation

q · p1F1 + q · p2F2 + q · p3F3 = 0 (18)

holds, we can eliminate F1 from the matrix element. We get

M = (19)(
ε · p2 − ε · p1

q · p2

q · p1

)
F2 +

(
ε · p3 − ε · p1

q · p3

q · p1

)
F3.

Thus we have actually reduced the set of covariants from
three to two in this example. This boils down to doing
the substitution

ε → ε− ε · p1
q

q · p1
. (20)

In this substitution the vector p1 can be chosen to be any
linear combination of incoming and outgoing momenta. It is
advisable to choose one that does not yield any singularities
in the physical phase space due to dividing by q ·p1. In the
unitary gauge a similar reduction can be carried out. In our
calculation we chose to get (q1+q2) ·q3 in the denominator.
This is equal to s − x −M2

W . This quantity has no poles
in the physical phase space.
(4)One has to be careful about the set of invariant variables.
Actually the set (s, t, x, y, z) has a problem. To see this,
consider the Feynman graph

(21)

The internal electron propagator is given by

S =
−i(/q2 + /q3)

s− x− y +M2
W

. (22)

In the pole scheme we should determine the residue for
the Z-pole. This means that we put s = M2

Z to lowest
order. The maximum value of x+ y is s and occurs in the
limit that the outgoing electron is produced at rest. We
see that the quantity 1/(s− x− y+M2

W ) does not have a
pole in the physical phase space but if we put s = M2

Z it
does develop a pole. For this reason we did not use the set
of parameters (s, t, x, y, z) but instead the set (s, t, ξ, η, z)
where ξ = x/s and η = y/s. This set causes no trouble
with spurious singularities.

The problem with spurious singularities, that we en-
countered in item (3) and (4), can be looked upon as follows.
Equation (15) tells us to split the invariant functions in
the matrix element. However, we have some freedom in
making this split-up. This makes it possible that the pole
term has a singularity that is then canceled by the regular
term. A sensible choice of such a split-up takes care not to
introduce new singularities in the physical phase space.
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